MONITOREO DE DESPLAZAMIENTOS SUPERFICIALES MEDIANTE SERIES DE TIEMPO DINSAR, PSI, SECTOR MONJES BLANCOS, PASO PEHUENCHE, REGIÓN DEL MAULE.
MONITOREO DE DESPLAZAMIENTOS SUPERFICIALES MEDIANTE SERIES DE TIEMPO DINSAR, PSI, SECTOR MONJES BLANCOS, PASO PEHUENCHE, REGIÓN DEL MAULE.
DOI:
https://doi.org/10.23854/07199562.2025613.aguileraPalabras clave:
Interferometría SAR, dispersores persistentes, remociones en masa, Sentinel-1, alteración hidrotermal, Cordillera de los AndesResumen
Este estudio aplica la técnica de Persistent Scatterer Interferometry (PSI) para el análisis de desplazamientos superficiales en procesos de remoción en masa en el Km 134,7-136,8 de la Ruta Internacional 115-CH, Paso Pehuenche, Región del Maule, Chile. Se procesaron 253 imágenes Sentinel-1 por geometría orbital (253 Ascending y 253 Descending) entre 2015-2024, identificando 27 dispersores persistentes localizados exclusivamente sobre zonas de alteración hidrotermal. Los resultados revelan velocidades de desplazamiento vertical entre 3,43 y 5,48 mm/año (alzamiento) y horizontales entre -6,50 y -8,43 mm/año (hacia el oeste). Los desplazamientos acumulados máximos alcanzaron 66 mm verticalmente y -77,9 mm horizontalmente. El análisis temporal muestra correlación entre períodos de mayor precipitación e incrementos en las tasas de desplazamiento. La concentración de Persistent Scatterer (PS) sobre materiales de alteración hidrotermal confirma que estos actúan como refugios de coherencia en ambientes volcánicos montañosos. La metodología PSI demostró efectividad para superar limitaciones de decorrelación temporal en terrenos complejos, estableciendo una línea base para el monitoreo continuo de amenazas naturales en corredores bioceánicos estratégicos.
Descargas
Citas
Becerra, C. (2006). Análisis de riesgo natural por remociones en masa, carretera El Cobre, División El Teniente. Corporación Nacional del Cobre, Rancagua, Chile.
Becerra, C., & De Rurange, J. (2018). Modelo de susceptibilidad a procesos de remociones en masa en rutas cordilleranas de Chile Central: Ruta 115 CH, Paso Pehuenche, Región del Maule. Investigaciones Geográficas, 55, 89-110.
Becerra, C., & De Rurange, J. (2021). Análisis de deslizamiento mediante técnicas UAV y LIDAR en Ruta 115 CH, Paso Pehuenche, Sector Monjes Blancos, Región del Maule, Chile. Investigaciones Geográficas, 61, 87-98.
Bekaert, D. P. S., Handwerger, A. L., Agram, P., & Kirschbaum, D. B. (2020). InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sensing of Environment, 249, 111983.
Carlà, T., Intrieri, E., Raspini, F., Bardi, F., Farina, P., Ferretti, A., Colombo, D., Novali, F., & Casagli, N. (2019). Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Scientific Reports, 9, 14137.
Carvalho, M., Cardoso-Fernandes, J., González, F. J., & Teodoro, A. C. (2025). Comparative performance of Sentinel-2 and Landsat-9 data for raw materials' exploration onshore and in coastal areas. Remote Sensing, 17(2), 305.
D'Aranno, P. J. V., Di Benedetto, A., Fiani, M., Marsella, M., Moriero, I., & Palenzuela Baena, J. A. (2021). An application of Persistent Scatterer Interferometry (PSI) technique for infrastructure monitoring. Remote Sensing, 13, 1052.
Dualeh, E. W., & Biggs, J. (2025). Separating magmatic and hydrothermal deformation using InSAR timeseries: Independent component analysis at Corbetti Caldera, Ethiopia. Journal of Geophysical Research: Solid Earth, 130, e2024JB030974.
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202-2212.
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161-2181.
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 94(B7), 9183-9191.
Grotzinger, J., & Jordan, T. H. (2014). Understanding Earth (7th ed.). W.H. Freeman and Company.
Handwerger, A. L., Huang, M. H., Fielding, E. J., Booth, A. M., & Bürgmann, R. (2019). A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Scientific Reports, 9(1), 1569.
Hanssen, R. F. (2001). Radar interferometry: Data interpretation and error analysis. Springer Netherlands.
Hauser, A. (1994). Remociones en Chile. International Journal of Rock Mechanics and Mining Sciences, 31(3), 159.
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR Persistent Scatterers. Geophysical Research Letters, 31(23), L23611.
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis. Journal of Geophysical Research: Solid Earth, 112(B7), B07407.
Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., ... & Casagli, N. (2018). The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides, 15(1), 123-133.
Intrieri, E., Carlà, T., Farina, P., Bardi, F., Ketizmen, H., & Casagli, N. (2019). Satellite interferometry as a tool for early warning and aiding decision making in an open-pit mine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12), 5248-5258.
Kang, Y., Zhao, C., Zhang, Q., Lu, Z., & Li, B. (2017). Application of InSAR techniques to an analysis of the Guanling landslide. Remote Sensing, 9(10), 1046.
Lara, M. (2007). Metodología para la evaluación y zonificación de peligro de remociones en masa con aplicación en la Quebrada San Ramón. Universidad de Chile.
Lee, H., & Liu, J. G. (2001). Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery. IEEE Transactions on Geoscience and Remote Sensing, 39, 223-232.
Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., & Gascon, F. (2017). Sen2Cor for Sentinel-2. Image and Signal Processing for Remote Sensing XXIII, 10427, 1042704.
Marín, M., Neira, H., Garrido, N., & Báez, F. (2021). Visor territorial de fallecidos por remociones en masa en Chile entre los años 1938-2020. SERNAGEOMIN.
Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4), 441-500.
Moreiras, S., & Sepúlveda, S. (2019). Megalandslides in the Andes of central Chile and Argentina (32°-34° S) and potential hazards. Geological Society, London, Special Publications, 399, 329-344.
Motagh, M., Shamshiri, R., Haghshenas-Haghighi, M., Wetzel, H.-U., Akbari, B., Nahavandchi, H., Roessner, S., & Arabi, S. (2017). Quantifying groundwater exploitation induced subsidence in the Rafsanjan Plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology, 218, 134-151. https://doi.org/10.1016/j.enggeo.2017.01.011
Osmanolu, B., Sunar, F., Wdowinski, S., & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102.
Pappas, O., Biggs, J., Prats-Iraola, P., Pulella, A., Stinton, A., & Achim, A. (2025). Measuring topographic change after volcanic eruptions using multistatic SAR satellites: Simulations in preparation for ESA's Harmony mission. Remote Sensing of Environment, 317, 114528.
Petrucci, O., & Gullà, G. (2009). A support analysis framework for mass movement damage assessment: Applications to case studies in Calabria (Italy). Natural Hazards and Earth System Sciences, 9(2), 315-326.
Pohl, C., & van Genderen, J. (2016). Remote Sensing Image Fusion: A Practical Guide (1st ed.). CRC Press.
Pour, A. B., & Hashim, M. (2018). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 10(5), 787-799.
Purkis, S. J., & Klemas, V. V. (2011). Remote sensing and global environmental change. John Wiley & Sons Ltd. https://doi.org/10.1002/9781118687659.
Reid, M. E., Sisson, T. W., & Brien, D. L. (2001). Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology, 29(9), 779-782.
Rojas Innocenti, A. I. (2019). Mineralogía de alteración e hidroquímica del sistema volcánico-hidrotermal Laguna del Maule: Implicancias en el riesgo volcánico, alzamiento superficial y recurso geotérmico (Tesis de Magíster en Ciencias, mención Geología, y Memoria para optar al título de Geólogo). Universidad de Chile, Santiago de Chile.
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382.
Ruiz, V. H., & Poblete, P. A. (2010). Análisis integrado de las condiciones climáticas de la Región del Maule. Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas.
Scott, K. M., Vallance, J. W., Kerle, N., Macías, J. L., Strauch, W., & Devoli, G. (2005). Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surface Processes and Landforms, 30(1), 59-79.
Sepúlveda, S. A., Rebolledo, S., & Vargas, G. (2006). Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response. Quaternary International, 158(1), 83-95.
Sepúlveda, S. A., Moreiras, S. M., Lara, M., & Alfaro, A. (2015). Debris flows in the Andean ranges of central Chile and Argentina triggered by 2013 summer storms: characteristics and consequences. Landslides, 12(1), 115-133.
Shami, S., Shahriari, M. A., Nilfouroushan, F., Forghani, N., Salimi, M., & Reshadi, M. A. M. (2024). Surface displacement measurement and modeling of the Shah-Gheyb salt dome in southern Iran using InSAR and machine learning techniques. International Journal of Applied Earth Observation and Geoinformation, 132, 104016. https://doi.org/10.1016/j.jag.2024.104016.
Tedesco, M. (2015). Remote sensing of the cryosphere. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118368909.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., ... & Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9-24.
Toure, S., Dasho, O., Wade, S., Diop, O., Kpalma, K., & Maiga, S. A. (2025). Mapping seasonal soil deformation in expansive clay using synthetic aperture radar interferometry: A case study in Diamniadio, Senegal. The Egyptian Journal of Remote Sensing and Space Science.
Wegmüller, U., & Werner, C. L. (1998). SAR interferometric signatures of forest. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1236-1245.
Wu, H., Zhang, Y., Kang, Y., Wei, J., Lu, Z., Yan, W., Wang, H., Liu, Z., Lv, X., Zhou, M., Li, K., Liu, Y., & Liu, N. (2024). SAR interferometry on full scatterers: Mapping ground deformation with ultra-high density from space. Remote Sensing of Environment, 302, 113965.
Zebker, H. A., Rosen, P. A., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102(B4), 7547-7563.
Zhang, Y., Amelung, F., & Aoki, Y. (2021). Imaging the hydrothermal system of Kirishima Volcanic Complex, Japan with ALOS-1/2 InSAR time series. ESS Open Archive.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Geográfica de Chile Terra Australis

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Aviso de derechos de autor/a
Revista Geográfica de Chile Terra Australis conserva los derechos patrimoniales (copyright) de las obras publicadas en Revista Geográfica de Chile Terra Australis.
Está permitida la reutilización del contenido bajo una licencia:

Reconocimiento
CC BY
Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original. Esta es la licencia más servicial de las ofrecidas. Recomendada para una máxima difusión y utilización de los materiales sujetos a la licencia.
Para ver más información ver en los links siguientes:



