Distribución global y relevancia epidemiológica de las Carbapenemasas NDM, KPC, VIM, IMP Y OXA-48-LIKE

Autores/as

  • Francisca Sanchez-Jorquera Tecnólogo Médico, Unidad de Diagnóstico Laboratorio Clínico, Instituto Oncológico Fundación Arturo López Pérez, , Chile
  • Edgardo Rojas-Mancilla Profesor Asistente, Escuela de Terapia Ocupacional, Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Chile
  • David Pezoa Profesor Asociado, Núcleo de Investigación en OneHealth, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
  • Cecilia Morales-Gonzalez Tecnólogo Médico, Unidad de Diagnóstico Laboratorio Clínico, Instituto Oncológico Fundación Arturo López Pérez, , Chile
  • Eric Matus-Alarcón Tecnólogo Médico, Unidad de Diagnóstico Laboratorio Clínico, Instituto Oncológico Fundación Arturo López Pérez, , Chile
  • Mariela Olguín-Barraza Tecnólogo Médico, Programa de Magíster en Ciencias Químico-Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Chile
  • Carolina Selman-Bravo Médico Cirujano, Unidad de Diagnóstico Laboratorio Clínico, Instituto Oncológico Fundación Arturo López Pérez, Chile

DOI:

https://doi.org/10.23854/07199562.2025611.sanchez

Palabras clave:

Carbapenemasas, resistencia antimicrobiana, bacterias multirresistentes, vigilancia epidemiológica

Resumen

La resistencia mediada por carbapenemasas, enzimas capaces de neutralizar los carbapenémicos, antibióticos considerados de última línea terapéutica, constituye una amenaza sanitaria de alcance global. Para caracterizar su verdadero alcance, realizamos una búsqueda exhaustiva de la literatura científica de los últimos cinco años, enfocada en la detección de las cinco carbapenemasas principales (KPC, NDM, VIM, IMP y OXA-48-like) en aislamientos humanos, y se consolidó la información obtenida en una base de datos unificada. A partir de ella se generaron mapas de distribución individual para cada enzima y un mapa compuesto que refleja la co-ocurrencia de todas. Los resultados revelan patrones geográficos distintivos: KPC domina en gran parte de América y Europa occidental; NDM presenta su mayor carga en el subcontinente indio y el norte de África; VIM se concentra en el sur de Europa; IMP mantiene su endemia en Japón y China; y OXA-48-like es especialmente prevalente en la región del Mediterráneo y Oriente Medio. Estas diferencias responden tanto a dinámicas locales de transferencia genética, plásmidos, integrones y elementos móviles, como a prácticas de uso de antibióticos y niveles de vigilancia microbiológica. Disponer de mapas precisos y actualizados resulta crucial para adaptar las políticas de vigilancia, optimizar estrategias de control y orientar la asignación de recursos y esfuerzos de investigación, con el fin de contener la diseminación de estas enzimas y preservar la eficacia de los tratamientos de última línea.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alvisi, G., Curtoni, A., Fonnesu, R., Piazza, A., Signoretto, C., Piccinini, G., Sassera, D., &Gaibani, P. (2025). Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics (Basel, Switzerland), 14(2), 141. https://doi.org/10.3390/antibiotics14020141

Ambler R. P. (1980). The structure of beta-lactamases. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 289(1036), 321–331. https://doi.org/10.1098/rstb.1980.0049

Aminov R. I. (2009). The role of antibiotics and antibiotic resistance in nature. Environmentalmicrobiology, 11(12), 2970–2988. https://doi.org/10.1111/j.1462-2920.2009.01972.x

Andrade, L. N., Curiao, T., Ferreira, J. C., Longo, J. M., Clímaco, E. C., Martinez, R., Bellissimo-Rodrigues, F., Basile-Filho, A., Evaristo, M. A., Del Peloso, P. F., Ribeiro, V. B., Barth, A. L., Paula, M. C., Baquero, F., Cantón, R., Darini, A. L., & Coque, T. M. (2011). Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrobialagents and chemotherapy, 55(7), 3579–3583. https://doi.org/10.1128/AAC.01783-10

Antequera M, A., Sáez B, C., Ciudad S, M., García B, M. J., Moyano V, B., Rodríguez C, P., Roy V, E., Aguilera G, M., Alonso N, E., Cárdenas I, M. J., Castro G, S., Domingo G, D., & Barrios B, A. (2020). Epidemiología, tratamiento y mortalidad en pacientes infectados por enterobacterias productoras de carbapenemasas: estudio retrospectivo [Epidemiology, treatment and mortality in infectionbycarbapenemase-producingEnterobacteriaceae: retrospective study]. Revista Chilena de Infectologia, 37(3), 295–303. https://doi.org/10.4067/s0716-10182020000300295

AntimicrobialResistanceCollaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet (London, England), 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Armstrong, T., Fenn, S. J., & Hardie, K. R. (2021). JMM Profile: Carbapenems: a broad-spectrum antibiotic. Journal of medical microbiology, 70(12), 001462. https://doi.org/10.1099/jmm.0.001462

Assembly, W. H. (2015). Global Action Plan on Antimicrobial Resistance. Geneva: World Health Organization

Aurilio, C., Sansone, P., Barbarisi, M., Pota, V., Giaccari, L. G., Coppolino, F., Barbarisi, A., Passavanti, M. B., & Pace, M. C. (2022). Mechanisms of Action of Carbapenem Resistance. Antibiotics (Basel, Switzerland), 11(3), 421. https://doi.org/10.3390/antibiotics11030421

Baek, J. Y., Cho, S. Y., Kim, S. H., Kang, C. I., Peck, K. R., Song, J. H., Chung, D. R., & Ko, K. S. (2019). Plasmid analysis of Escherichia coli isolates from South Korea co-producing NDM-5 and OXA-181 carbapenemases. Plasmid, 104, 102417. https://doi.org/10.1016/j.plasmid.2019.102417

Balm, M. N., Ngan, G., Jureen, R., Lin, R. T., & Teo, J. (2012). Molecular characterization of newly emerged blaKPC-2-producing Klebsiella pneumoniae in Singapore. Journalofclinicalmicrobiology, 50(2), 475–476. https://doi.org/10.1128/JCM.05914-11

Barría-Loaiza, C., Pincheira, A., Quezada, M., Vera, A., Valenzuela, P., Domínguez, M., Lima, C. A., Araya, I., Araya, P., Prat, S., Aguayo, C., Fernández, J., Hormazábal, J. C., Bello-Toledo, H., & González-Rocha, G. (2016). Molecular typing and genetic environment of the blaKPC gene in Chilean isolates of Klebsiella pneumoniae. Journal of global antimicrobial resistance, 4, 28–34. https://doi.org/10.1016/j.jgar.2016.01.001

Bell, J. M., Gottlieb, T., Daley, D. A., & Coombs, G. W. (2019). Australian Group on Antimicrobial Resistance (AGAR) Australian Gram-negative Sepsis Outcome Programme (GNSOP) Annual Report 2017. Communicable diseases intelligence (2018), 43, 10.33321/cdi.2019.43.37. https://doi.org/10.33321/cdi.2019.43.37

Bonomo, R. A., Burd, E. M., Conly, J., Limbago, B. M., Poirel, L., Segre, J. A., &Westblade, L. F. (2018). Carbapenemase-Producing Organisms: A Global Scourge. Clinical infectious diseases, 66(8), 1290–1297. https://doi.org/10.1093/cid/cix893

Botelho, J., Mourão, J., Roberts, A. P., &Peixe, L. (2020). Comprehensive genome data analysis establishes a triple whammy of carbapenemases, ICEs and multiple clinically relevant bacteria. Microbial Genomics, 6(10), mgen000424. https://doi.org/10.1099/mgen.0.000424

Bradford, P. A., Bratu, S., Urban, C., Visalli, M., Mariano, N., Landman, D., Rahal, J. J., Brooks, S., Cebular, S., & Quale, J. (2004). Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 39(1), 55–60. https://doi.org/10.1086/421495

Bratu, S., Mooty, M., Nichani, S., Landman, D., Gullans, C., Pettinato, B., Karumudi, U., Tolaney, P., & Quale, J. (2005). Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrobial agents and chemotherapy, 49(7), 3018–3020. https://doi.org/10.1128/AAC.49.7.3018-3020.2005

Bush, K., & Jacoby, G. A. (2010). Updated functional classification of beta-lactamases. Antimicrobialagents and chemotherapy, 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09

Campos, J. C., da Silva, M. J., dos Santos, P. R., Barros, E. M., Pereira, M.deO., Seco, B. M., Magagnin, C. M., Leiroz, L. K., de Oliveira, T. G., de Faria-Júnior, C., Cerdeira, L. T., Barth, A. L., Sampaio, S. C., Zavascki, A. P., Poirel, L., & Sampaio, J. L. (2015). Characterization of Tn3000, a Transposon Responsible for blaNDM-1 Dissemination among Enterobacteriaceae in Brazil, Nepal, Morocco, and India. Antimicrobial agents and chemotherapy, 59(12), 7387–7395. https://doi.org/10.1128/AAC.01458-15

Cantón, R., & Bou, G. (2017). Resistencia antimicrobiana en bacilos gramnegativos: una amenaza actual y global. Enfermedades Infecciosas y Microbiología Clínica, 3-10.

Carvalho-Assef, A. P., Pereira, P. S., Albano, R. M., Berião, G. C., Tavares, C. P., Chagas, T. P., Marques, E. A., Timm, L. N., Da Silva, R. C., Falci, D. R., & Asensi, M. D. (2014). Detection of NDM-1-, CTX-M-15-, and qnrB4-producing Enterobacter hormaechei isolates in Brazil. Antimicrobial agents and chemotherapy, 58(4), 2475–2476. https://doi.org/10.1128/AAC.02804-13

Cerdeira, L. T., Lam, M. M. C., Wyres, K. L., Wick, R. R., Judd, L. M., Lopes, R., Ribas, R. M., Morais, M. M., Holt, K. E., &Lincopan, N. (2019). Small IncQ1 and Col-Like Plasmids Harboring blaKPC-2 and Non-Tn4401 Elements (NTEKPC-IId) in High-Risk Lineages of Klebsiella pneumoniae CG258. Antimicrobial agents and chemotherapy, 63(3), e02140-18. https://doi.org/10.1128/AAC.02140-18

Contreras, D. A., Fitzwater, S. P., Nanayakkara, D. D., Schaenman, J., Aldrovandi, G. M., Garner, O. B., & Yang, S. (2020). Coinfections of Two Strains of NDM-1- and OXA-232-Coproducing Klebsiella pneumoniae in a Kidney Transplant Patient. Antimicrobial agents and chemotherapy, 64(4), e00948-19. https://doi.org/10.1128/AAC.00948-19

Cuzon, G., Naas, T., Truong, H., Villegas, M. V., Wisell, K. T., Carmeli, Y., Gales, A. C., Venezia, S. N., Quinn, J. P., & Nordmann, P. (2010). Worldwide diversity of Klebsiella pneumoniae that produce beta-lactamase blaKPC-2 gene. Emerging infectious diseases, 16(9), 1349–1356. https://doi.org/10.3201/eid1609.091389

De Belder, D., Faccone, D., Tijet, N., Melano, R. G., Rapoport, M., Petroni, A., Lucero, C., Pasteran, F., Corso, A., &Gomez, S. A. (2017). Novel class 1 Integrons and sequence types in VIM-2 and VIM-11-producing clinical strains of Enterobacter cloacae. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 54, 374–378. https://doi.org/10.1016/j.meegid.2017.07.019

Diene, S. M., &Rolain, J. M. (2014). Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 20(9), 831–838. https://doi.org/10.1111/1469-0691.12655

Dutescu, I. A., & Hillier, S. A. (2021). Encouraging the Development of New Antibiotics: Are Financial Incentives the Right Way Forward? A Systematic Review and Case Study. Infection and drug resistance, 14, 415–434. https://doi.org/10.2147/IDR.S287792

Drawz, S. M., &Bonomo, R. A. (2010). Three decades of beta-lactamase inhibitors. Clinical microbiology reviews, 23(1), 160–201. https://doi.org/10.1128/CMR.00037-09

Elena, A., Cejas, D., Magariños, F., Jewtuchowicz, V., Facente, A., Gutkind, G., Di Conza, J., &Radice, M. (2018). Spread of Clonally Related Escherichia coli Strains Harboring an IncA/C1 Plasmid Encoding IMP-8 and Its Recruitment into an Unrelated MCR-1-Containing Isolate. Antimicrobialagents and chemotherapy, 62(6), e02414-17. https://doi.org/10.1128/AAC.02414-17

Escobar Pérez, J. A., Olarte Escobar, N. M., Castro-Cardozo, B., Valderrama Márquez, I. A., Garzón Aguilar, M. I., Martinez de la Barrera, L., Barrero Barreto, E. R., Marquez-Ortiz, R. A., Moncada Guayazán, M. V., & Vanegas Gómez, N. (2013). Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrobial agents and chemotherapy, 57(4), 1957–1960. https://doi.org/10.1128/AAC.01447-12

Galetti, R., Andrade, L. N., Varani, A. M., &Darini, A. L. C. (2019). A Phage-Like Plasmid Carrying blaKPC-2 Gene in Carbapenem-Resistant Pseudomonas aeruginosa. Frontiers in microbiology, 10, 572. https://doi.org/10.3389/fmicb.2019.00572

Giddins, M. J., Macesic, N., Annavajhala, M. K., Stump, S., Khan, S., McConville, T. H., Mehta, M., Gomez-Simmonds, A., &Uhlemann, A. C. (2018). Successive Emergence of Ceftazidime-Avibactam Resistance through Distinct Genomic Adaptations in blaKPC-2-Harboring Klebsiella pneumoniae Sequence Type 307 Isolates. Antimicrobial agents and chemotherapy, 62(3), e02101-17. https://doi.org/10.1128/AAC.02101-17

Giske C. G. (2015). Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 21(10), 899–905. https://doi.org/10.1016/j.cmi.2015.05.022

Godeux, A. S., Svedholm, E., Barreto, S., Potron, A., Venner, S., Charpentier, X., &Laaberki, M. H. (2022). Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. mBio, 13(1), e0263121. https://doi.org/10.1128/mbio.02631-21

Gomez, S. A., Pasteran, F. G., Faccone, D., Tijet, N., Rapoport, M., Lucero, C., Lastovetska, O., Albornoz, E., Galas, M., KPC Group, Melano, R. G., Corso, A., &Petroni, A. (2011). Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 17(10), 1520–1524. https://doi.org/10.1111/j.1469-0691.2011.03600.x

Gomez, S., Pasteran, F., Faccone, D., Bettiol, M., Veliz, O., De Belder, D., Rapoport, M., Gatti, B., Petroni, A., &Corso, A. (2013). Intrapatient emergence of OXA-247: a novel carbapenemase found in a patient previously infected with OXA-163-producing Klebsiella pneumoniae. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 19(5), E233–E235. https://doi.org/10.1111/1469-0691.12142

HammoudiHalat, D., & Ayoub Moubareck, C. (2020). The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel, Switzerland), 9(4), 186. https://doi.org/10.3390/antibiotics9040186

Hansen G. T. (2021). Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infectious Diseases and Therapy, 10(1), 75–92. https://doi.org/10.1007/s40121-020-00395-2

Hellinger, W. C., & Brewer, N. S. (1999). Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo Clinic proceedings, 74(4), 420–434. https://doi.org/10.4065/74.4.420

High Dose Tigecycline for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Advances in therapy, 37(3), 1049–1064. https://doi.org/10.1007/s12325-020-01235-y

Ho, C. S., Wong, C. T. H., Aung, T. T., Lakshminarayanan, R., Mehta, J. S., Rauz, S., McNally, A., Kintses, B., Peacock, S. J., de la Fuente-Nunez, C., Hancock, R. E. W., & Ting, D. S. J. (2025). Antimicrobial resistance: a concise update. The Lancet. Microbe, 6(1), 100947. https://doi.org/10.1016/j.lanmic.2024.07.010

Hu, Y. Y., Wang, Q., Sun, Q. L., Chen, G. X., & Zhang, R. (2019). A novel plasmid carrying carbapenem-resistant gene blaKPC-2 in Pseudomonas aeruginosa. Infection and drug resistance, 12, 1285–1288. https://doi.org/10.2147/IDR.S196390

Ji, J., Zhu, Y., Zhao, F., Zhang, J., Yao, B., Zhu, M., Yu, Y., Zhang, J., & Fu, Y. (2024). Co-colonization of different species harboring KPC or NDM carbapenemase in the same host gut: insight of resistance evolution by horizontal gene transfer. Frontiers in Microbiology, 15, 1416454. https://doi.org/10.3389/fmicb.2024.1416454

Kaase, M., Nordmann, P., Wichelhaus, T. A., Gatermann, S. G., Bonnin, R. A., &Poirel, L. (2011). NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. The Journal of antimicrobial chemotherapy, 66(6), 1260–1262. https://doi.org/10.1093/jac/dkr135

Kumarasamy, K., &Kalyanasundaram, A. (2012). Emergence of Klebsiella pneumoniae isolate co-producing NDM-1 with KPC-2 from India. The Journal of antimicrobial chemotherapy, 67(1), 243–244. https://doi.org/10.1093/jac/dkr431

Lauretti, L., Riccio, M. L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R., &Rossolini, G. M. (1999). Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrobial agents and chemotherapy, 43(7), 1584–1590. https://doi.org/10.1128/AAC.43.7.1584

Limbago, B. M., Rasheed, J. K., Anderson, K. F., Zhu, W., Kitchel, B., Watz, N., Munro, S., Gans, H., Banaei, N., & Kallen, A. J. (2011). IMP-producing carbapenem-resistant Klebsiella pneumoniae in the United States. Journal of clinical microbiology, 49(12), 4239–4245. https://doi.org/10.1128/JCM.05297-11

Lincopan, N., McCulloch, J. A., Reinert, C., Cassettari, V. C., Gales, A. C., &Mamizuka, E. M. (2005). First isolation of metallo-beta-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. Journal of clinical microbiology, 43(1), 516–519. https://doi.org/10.1128/JCM.43.1.516-519.2005

Logan, L. K., & Weinstein, R. A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of infectious diseases, 215(suppl_1), S28–S36. https://doi.org/10.1093/infdis/jiw282

Ma, J., Song, X., Li, M., Yu, Z., Cheng, W., Yu, Z., Zhang, W., Zhang, Y., Shen, A., Sun, H., & Li, L. (2023). Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiological research, 266, 127249. https://doi.org/10.1016/j.micres.2022.127249

Martin, A., Fahrbach, K., Zhao, Q., &Lodise, T. (2018). Association Between Carbapenem Resistance and Mortality Among Adult, Hospitalized Patients With Serious Infections Due to Enterobacteriaceae: Results of a Systematic Literature Review and Meta-analysis. Open Forum Infectious Diseases, 5(7), ofy150. https://doi.org/10.1093/ofid/ofy150

Massova, I., &Mobashery, S. (1998). Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrobial agents and chemotherapy, 42(1), 1–17. https://doi.org/10.1128/AAC.42.1.1

Matsumura, Y., Peirano, G., Devinney, R., Bradford, P. A., Motyl, M. R., Adams, M. D., Chen, L., Kreiswirth, B., &Pitout, J. D. D. (2017). Genomic epidemiology of global VIM-producing Enterobacteriaceae. The Journal of antimicrobial chemotherapy, 72(8), 2249–2258. https://doi.org/10.1093/jac/dkx148

McCarthy, K. L., Jennison, A., Wailan, A. M., & Paterson, D. L. (2017). Draft Genome Sequence of an IMP-7-Producing Pseudomonas aeruginosa Bloodstream Infection Isolate from Australia. Genome announcements, 5(27), e00596-17. https://doi.org/10.1128/genomeA.00596-17

McInnes, R. S., McCallum, G. E., Lamberte, L. E., & van Schaik, W. (2020). Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Current Opinion in Microbiology, 53, 35–43. https://doi.org/10.1016/j.mib.2020.02.002

Mojica, M. F., Correa, A., Vargas, D. A., Maya, J. J., Montealegre, M. C., Rojas, L. J., Ruiz, S. J., Quinn, J. P., Villegas, M. V., & Colombian Nosocomial Bacterial Resistance Study Group (2012). Molecular correlates of the spread of KPC-producing Enterobacteriaceae in Colombia. International journal of antimicrobial agents, 40(3), 277–279. https://doi.org/10.1016/j.ijantimicag.2012.05.006

Munkholm, L., & Rubin, O. (2020). The global governance of antimicrobial resistance: a cross-country study of alignment between the global action plan and national action plans. Globalization and health, 16(1), 109. https://doi.org/10.1186/s12992-020-00639-3

Mushi, M. F., Mshana, S. E., Imirzalioglu, C., &Bwanga, F. (2014). Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. BioMed research international, 2014, 303104. https://doi.org/10.1155/2014/303104

Naas, T., Cuzon, G., Villegas, M. V., Lartigue, M. F., Quinn, J. P., & Nordmann, P. (2008). Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrobial agents and chemotherapy, 52(4), 1257–1263. https://doi.org/10.1128/AAC.01451-07

Nordmann, P., Naas, T., &Poirel, L. (2011). Global spread of Carbapenemase-producing Enterobacteriaceae. Emerging infectious diseases, 17(10), 1791–1798. https://doi.org/10.3201/eid1710.110655

Nordmann, P., &Poirel, L. (2014). The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 20(9), 821–830. https://doi.org/10.1111/1469-0691.12719

Nordmann P. &Poirel L. (2019). Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 69(Suppl 7), S521–S528. https://doi.org/10.1093/cid/ciz824

Pasteran, F., Meo, A., Gomez, S., Derdoy, L., Albronoz, E., Faccone, D., Guerriero, L., Archuby, D., Tarzia, A., López, M., &Corso, A. (2014). Emergence of genetically related NDM-1-producing Providencia rettgeri strains in Argentina. Journal of global antimicrobial resistance, 2(4), 344–345. https://doi.org/10.1016/j.jgar.2014.07.003

Pitout, J. D. D., Peirano, G., Kock, M. M., Strydom, K. A., & Matsumura, Y. (2019). The Global Ascendency of OXA-48-Type Carbapenemases. Clinical microbiology reviews, 33(1), e00102-19. https://doi.org/10.1128/CMR.00102-19

Poirel, L., Naas, T., Nicolas, D., Collet, L., Bellais, S., Cavallo, J. D., & Nordmann, P. (2000). Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrobial agents and chemotherapy, 44(4), 891–897. https://doi.org/10.1128/AAC.44.4.891-897.2000

Poirel, L., Héritier, C., Tolün, V., & Nordmann, P. (2004). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrobial agents and chemotherapy, 48(1), 15–22. https://doi.org/10.1128/AAC.48.1.15-22.2004

Poirel, L., Abdelaziz, M. O., Bernabeu, S., & Nordmann, P. (2013). Occurrence of OXA-48 and VIM-1 carbapenemase-producing Enterobacteriaceae in Egypt. International journal of antimicrobial agents, 41(1), 90–91. https://doi.org/10.1016/j.ijantimicag.2012.08.015

Poirel, L., Bonnin, R. A., & Nordmann, P. (2012). Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrobial agents and chemotherapy, 56(1), 559–562. https://doi.org/10.1128/AAC.05289-11

Qin, X., Ding, L., Hao, M., Li, P., Hu, F., & Wang, M. (2024). Antimicrobial resistance of clinical bacterial isolates in China: current status and trends. JAC-antimicrobial resistance, 6(2), dlae052. https://doi.org/10.1093/jacamr/dlae052

Queenan, A. M., & Bush, K. (2007). Carbapenemases: the versatile beta-lactamases. Clinical microbiology reviews, 20(3), 440–458. https://doi.org/10.1128/CMR.00001-07

Reyes, J. A., Villavicencio, F., Villacís, J. E., Pavón, E., Campoverde, N., Espinel, M., Núñez, B., & Trueba, G. (2020). First report of a clinical isolate of blaOXA-48- carbapenemase producing Raoultellaornithinolytica in South America. Revista Argentina de microbiologia, 52(1), 82–83. https://doi.org/10.1016/j.ram.2019.02.002

Riccio, M. L., Franceschini, N., Boschi, L., Caravelli, B., Cornaglia, G., Fontana, R., Amicosante, G., &Rossolini, G. M. (2000). Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrobial agents and chemotherapy, 44(5), 1229–1235. https://doi.org/10.1128/AAC.44.5.1229-1235.2000

Rocha, C., Reynolds, N. D., & Simons, M. P. (2015). Resistencia emergente a los antibióticos: una amenaza global y un problema crítico en el cuidado de la salud. Revista Peruana De Medicina Experimental Y Salud Pública, 32(1), 139-145.

Rojas, L. J., Wright, M. S., De La Cadena, E., Motoa, G., Hujer, K. M., Villegas, M. V., Adams, M. D., &Bonomo, R. A. (2016). Initial Assessment of the Molecular Epidemiology of blaNDM-1 in Colombia. Antimicrobialagents and chemotherapy, 60(7), 4346–4350. https://doi.org/10.1128/AAC.03072-15

Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., &Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel, Switzerland), 11(13), 1946. https://doi.org/10.3390/healthcare11131946

Silva, K. E., Cayô, R., Carvalhaes, C. G., Patussi Correia Sacchi, F., Rodrigues-Costa, F., Ramos da Silva, A. C., Croda, J., Gales, A. C., &Simionatto, S. (2015). Coproduction of KPC-2 and IMP-10 in Carbapenem-Resistant Serratia marcescens Isolates from an Outbreak in a Brazilian Teaching Hospital. Journal of clinical microbiology, 53(7), 2324–2328. https://doi.org/10.1128/JCM.00727-15

Solgi, H., Badmasti, F., Aminzadeh, Z., Giske, C. G., Pourahmad, M., Vaziri, F., Havaei, S. A., &Shahcheraghi, F. (2017). Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of bla NDM-7 and bla OXA-48. European journal of clinical microbiology & infectious diseases, 36(11), 2127–2135. https://doi.org/10.1007/s10096-017-3035-3

Stewart, A., Harris, P., Henderson, A., & Paterson, D. (2018). Treatment of Infections by OXA-48-Producing Enterobacteriaceae. Antimicrobial agents and chemotherapy, 62(11), e01195-18. https://doi.org/10.1128/AAC.01195-18

Tavares, C. P., Pereira, P. S., Marques, E.deA., Faria, C., Jr, de Souza, M.daP., de Almeida, R., Alves, C.deF., Asensi, M. D., & Carvalho-Assef, A. P. (2015). Molecular epidemiology of KPC-2-producing Enterobacteriaceae (non-Klebsiella pneumoniae) isolated from Brazil. Diagnostic microbiology and infectious disease, 82(4), 326–330. https://doi.org/10.1016/j.diagmicrobio.2015.04.002

Temkin, E., Fallach, N., Almagor, J., Gladstone, B. P., Tacconelli, E., Carmeli, Y., & DRIVE-AB Consortium (2018). Estimating the number of infections caused by antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in 2014: a modelling study. The Lancet. Global health, 6(9), e969–e979. https://doi.org/10.1016/S2214-109X(18)30278-X

Tenover, F. C., Nicolau, D. P., & Gill, C. M. (2022). Carbapenemase-producing Pseudomonas aeruginosa -an emerging challenge. Emerging Microbes & Infections, 11(1), 811–814. https://doi.org/10.1080/22221751.2022.2048972

Toleman, M. A., Rolston, K., Jones, R. N., & Walsh, T. R. (2004). blaVIM-7, an evolutionarily distinct metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrobial agents and chemotherapy, 48(1), 329–332. https://doi.org/10.1128/AAC.48.1.329-332.2004

Turton, J. F., Doumith, M., Hopkins, K. L., Perry, C., Meunier, D., & Woodford, N. (2016). Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. Journal of medical microbiology, 65(6), 538–546. https://doi.org/10.1099/jmm.0.000248

UK Health Security Agency English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2022 to 2023. 2023. Available online: https://webarchive.nationalarchives.gov.uk/ukgwa/20240127185100mp_/https://assets.

publishing.service.gov.uk/media/6555026e544aea000dfb2e19/ESPAUR-report-2022-to-2023.pdf

van Beek, J., Räisänen, K., Broas, M., Kauranen, J., Kähkölä, A., Laine, J., Mustonen, E., Nurkkala, T., Puhto, T., Sinkkonen, J., Torvinen, S., Vornanen, T., Vuento, R., Jalava, J., &Lyytikäinen, O. (2019). Tracing local and regional clusters of carbapenemase-producing Klebsiella pneumoniae ST512 with whole genome sequencing, Finland, 2013 to 2018. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 24(38), 1800522. https://doi.org/10.2807/1560-7917.ES.2019.24.38.1800522

van Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence, 8(4), 460–469. https://doi.org/10.1080/21505594.2016.1222343

Wailan, A. M., Paterson, D. L., Kennedy, K., Ingram, P. R., Bursle, E., &Sidjabat, H. E. (2015). Genomic Characteristics of NDM-Producing Enterobacteriaceae Isolates in Australia and Their blaNDM Genetic Contexts. Antimicrobial agents and chemotherapy, 60(1), 136–141. https://doi.org/10.1128/AAC.01243-15

Watanabe, M., Iyobe, S., Inoue, M., & Mitsuhashi, S. (1991). Transferableimipenemresistance in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 35(1), 147–151. https://doi.org/10.1128/AAC.35.1.147

Wise, M. G., Karlowsky, J. A., Mohamed, N., Hermsen, E. D., Kamat, S., Townsend, A., Brink, A., Soriano, A., Paterson, D. L., Moore, L. S. P., &Sahm, D. F. (2024). Global trends in carbapenem- and difficult-to-treat-resistance among World Health Organization priority bacterial pathogens: ATLAS surveillance program 2018-2022. Journal of global antimicrobial resistance, 37, 168–175. https://doi.org/10.1016/j.jgar.2024.03.020

Woodford, N., Tierno, P. M., Jr, Young, K., Tysall, L., Palepou, M. F., Ward, E., Painter, R. E., Suber, D. F., Shungu, D., Silver, L. L., Inglima, K., Kornblum, J., & Livermore, D. M. (2004). Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrobial agents and chemotherapy, 48(12), 4793–4799. https://doi.org/10.1128/AAC.48.12.4793-4799.2004

World Health Organization. (2019). 2019 antibacterial agents in clinical development: An analysis of the antibacterial clinical development pipeline. World Health Organization. https://www.who.int/publications-detail-redirect/9789240000193

Yigit, H., Queenan, A. M., Anderson, G. J., Domenech-Sanchez, A., Biddle, J. W., Steward, C. D., Alberti, S., Bush, K., &Tenover, F. C. (2001). Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial agents and chemotherapy, 45(4), 1151–1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001

Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., & Walsh, T. R. (2009). Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial agents and chemotherapy, 53(12), 5046–5054. https://doi.org/10.1128/AAC.00774-09

Yuan, P.-B., Dai, L.-T., Zhang, Q.-K., Zhong, Y.-X., Liu, W.-T., Yang, L., & Chen, D.-Q. (2024). Global emergence of double and multi-carbapenemase producing organisms: epidemiology, clinical significance, and evolutionary benefits on antimicrobial resistance and virulence. Microbiology spectrum, 12(7), e0000824. https://doi.org/10.1128/spectrum.00008-24

Zha, L., Pan, L., Guo, J., French, N., Villanueva, E. V., &Tefsen, B. (2020). Effectiveness and Safety of High Dose Tigecycline for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Advances in therapy, 37(3), 1049–1064. https://doi.org/10.1007/s12325-020-01235-y

Zhanel, G. G., Simor, A. E., Vercaigne, L., Mandell, L., & Canadian Carbapenem Discussion Group (1998). Imipenem and meropenem: Comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. The Canadian journal of infectious diseases = Journal canadien des maladies infectieuses, 9(4), 215–228. https://doi.org/10.1155/1998/831425

Descargas

Publicado

2025-09-29

Cómo citar

Sanchez-Jorquera, F., Rojas-Mancilla, E., Pezoa, D., Morales-Gonzalez, C., Matus-Alarcón, E., Olguín-Barraza, M., & Selman-Bravo, C. (2025). Distribución global y relevancia epidemiológica de las Carbapenemasas NDM, KPC, VIM, IMP Y OXA-48-LIKE. Revista Geográfica De Chile Terra Australis, 61(1). https://doi.org/10.23854/07199562.2025611.sanchez

Artículos más leídos del mismo autor/a