Pronóstico de inundaciones en cuencas de respuesta rápida: un estudio de caso de la microcuenca Yacupugro de las laderas del volcán Pichincha en Quito, Ecuador

Autores/as

  • Carlos Aníbal Gutiérrez-Caiza Magister en gerencia de proyectos educativos y sociales, Grupo de Investigación de Recursos Hídricos y Acuáticos, Universidad Regional Amazónica Ikiam, Parroquia Muyuna
  • Víctor Espinoza-Romero Magister en gestión de proyectos, Grupo de Investigación de Recursos Hídricos y Acuáticos, Universidad Regional Amazónica Ikiam, Parroquia Muyuna
  • Theofilos Toulkeridis School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Universidad de Especialidades Turísticas UDET, Quito, Ecuador

DOI:

https://doi.org/10.23854/07199562.2025611.gutierrez

Palabras clave:

microcuencas urbanas, tiempos de concentración, pronóstico de inundaciones, período de retorno, precipitación antecedente

Resumen

El presente estudio presenta una metodología de análisis de inundaciones aplicable a cuencas urbanas con tiempos de concentración menores a 20 minutos, siendo el caso de la microcuenca Yacupugro en Ecuador, la cual presenta un tiempo de concentración de 15,22 minutos, una pendiente de 31%, ocasionando inundaciones violentas. El mes más lluvioso es diciembre, seguido de febrero, marzo, noviembre, abril y enero en orden según el número de frecuencia y probabilidad de ocurrencia de inundaciones. Al no existir datos sobre caudales medidos en la microcuenca, se utilizaron métodos hidrometeorológicos indirectos basados en precipitaciones máximas en 24 horas y curvas de intensidad, duración y frecuencia – IDF, permitiendo comparar resultados. La Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito (EPMAPS) ha construido un canal trapezoidal (h=1,70 m, b=3,80 m y m=1,5) que recoge agua de las microcuencas de los ríos Yacupugro y Sin nombre (S/N), conduce a un reservorio ubicado en la microcuenca San Isidro ubicada a su suroeste, para luego depositarla en el alcantarillado de la EPMAPS. Fue modelado con un caudal total de 7,60 m3/s, correspondiente a una precipitación de 85,3 mm y un periodo de retorno de 100 años. Así, se observó que el canal opera a su máxima capacidad y el reservorio con sus estructuras aplaca este tipo de avenidas sin desbordarse, cumpliendo su función, siempre y cuando dichas estructuras se encuentren limpias. La alerta se basó en el umbral de precipitación previa (agua acumulada en el suelo durante los últimos 10, 7, 5 y 3 días), considerando el tipo de suelo para alcanzar la capacidad de campo llegando a una profundidad de un metro, necesitando absorber al menos 129 mm de agua. Con esto fue posible concluir que el sistema de pronóstico es capaz de iniciar con un aviso anticipado si la precipitación antecedente en 3 a 7 días una vez que supera los 129 mm. De esta manera, se puede pronosticar con bastante anticipación al momento de concentración.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abraham, S., Huynh, C., & Vu, H. (2019). Classification of soils into hydrologic groups using machine learning. Data, 5(1), 2.

Alamoudi, F., Saber, M., Kantoush, S. A., Boulmaiz, T., Abdrabo, K. I., Abdelmoneim, H., & Sumi, T. (2023). Stormwater management modeling and machine learning for flash flood susceptibility prediction in Wadi Qows, Saudi Arabia. Hydrological Research Letters, 17(3), 62-68.

Albán-Campaña, D. D., Zapata, J., Ordoñez, E., Toulkeridis, T., Rodriguez, K., Martinez-Maldonado, K. P., & Zapata, A. (2021, June). Evaluation of Subsidence Hazard with Geo-Radar Within a Populated City-A Case Study of Southern Quito, Ecuador. In XV Multidisciplinary International Congress on Science and Technology (pp. 169-183). Cham: Springer International Publishing.

Alonso-Pandavenes, O., Torrijo Echarri, F. J., & Garzón-Roca, J. (2024). Sustainable Management of Landslides in Ecuador: Leveraging Geophysical Surveys for Effective Risk Reduction. Sustainability, 16(24), 10797.

Assi, A. T., Blake, J., Mohtar, R. H., & Braudeau, E. (2019). Soil aggregates structure-based approach for quantifying the field capacity, permanent wilting point and available water capacity. Irrigation Science, 37, 511-522.

Babu, S. H., & Kumar, D. S. (2024, June). Application of the HEC-HMS model to generate a flood hydrograph of an extreme event in a tropical basin. In IOP Conference Series: Earth and Environmental Science (Vol. 1326, No. 1, p. 012145). IOP Publishing

Bajirao, T. S. (2021). Comparative performance of different probability distribution functions for maximum rainfall estimation at different time scales. Arabian Journal of Geosciences, 14, 1-15.

Bell, F. C., & Kar, S. O. (1969). Characteristic response times in design flood estimation. Journal of Hydrology, 8(2), 173-196.

Bendix, J., Trachte, K., Palacios, E., Rollenbeck, R., Göttlicher, D., Nauss, T., & Bendix, A. (2011). El Niño meets la Niña—anomalous rainfall patterns in the" traditional" el Niño region of Southern Ecuador. Erdkunde, 151-167.

Brachhi, P., Torrijo, F. J., Boix, A., Cruz Cabrera, M., & Giordanelli, D. (2020). Urban and hydrogeological alert on the morphoclimatic risk affecting Quito's World Heritage. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Online), 44, 825-832.

Brendel, C. E., Dymond, R. L., & Aguilar, M. F. (2020). Integration of quantitative precipitation forecasts with real-time hydrology and hydraulics modeling towards probabilistic forecasting of urban flooding. Environmental Modelling & Software, 134, 104864.

Bucherie, A., Hultquist, C., Adamo, S., Neely, C., Ayala, F., Bazo, J., & Kruczkiewicz, A. (2022). A comparison of social vulnerability indices specific to flooding in Ecuador: Principal component analysis (PCA) and expert knowledge. International journal of disaster risk reduction, 73, 102897.

Cann, K. F., Thomas, D. R., Salmon, R. L., Wyn-Jones, A. P., & Kay, D. (2013). Extreme water-related weather events and waterborne disease. Epidemiology & Infection, 141(4), 671-686.

Castelo, C. A. J., Cruz, M., Almeida, O. P., & Toulkeridis, T. (2018, April). Comparative determination of the probability of landslide ocurrences and susceptibility in Central Quito, Ecuador. In 2018 International Conference on eDemocracy & eGovernment (ICEDEG) (pp. 136-143). IEEE.

Cheng, D., Shimizu, K., & Yamada, T. J. (2021). Hydrological frequency analysis of large-ensemble climate simulation data using control density as a statistical control. Hydrological Research Letters, 15(4), 84-91.

Chow, V. T. (1953). Frequency analysis of hydrologic data with special application to rainfall intensities. University of Illinois. Engineering Experiment Station. Bulletin; no. 414.

Daly, M. C. (1989). Correlations between Nazca/Farallon plate kinematics and forearc basin evolution in Ecuador. Tectonics, 8(4), 769-790.

De Moraes, O. L. L. (2022). Some evidence on the reduction of the disasters impact due to natural hazards in the Americas and the Caribbean after the 1990s. International Journal of Disaster Risk Reduction, 75, 102984

Dibaba, W. T. (2018). A review of sustainability of urban drainage system: traits and consequences. Journal of Sedimentary Environments, 3(3), 131-137.

EMAAP-Q (Alcantarillado, Empresa Metropolitana de, and Agua Potable) 2009. ‘Normas de Diseño de Sistemas de Alcantarillado Para La EMAAP-Q’. Quito, Ecuador.

Fattahi, E., & Habibi, M. (2022). Estimation of probable maximum precipitation 24-h (PMP 24-h) through statistical methods over Iran. Water Supply, 22(8), 6543-6557.

Gopalakrishnan, C. (2013). Water and disasters: A review and analysis of policy aspects. International Journal of Water Resources Development, 29(2), 250-271.

Grayman, W. M. (2011). Water-related disasters: A review and commentary. Frontiers of Earth Science, 5(4), 371-377.

Guelfi, M., & López-Vazquez, C. (2018). Comparing the Thiessen’s Method against simpler alternatives using Monte Carlo Simulation. Revista Cartográfica, (96), 125-138.

Guo, J. (2022). General unit hydrograph from Chow’s linear theory of hydrologic systems and its applications. Journal of Hydrologic Engineering, 27(10), 04022020.

Hamidifar, H., & Nones, M. (2021). Global to regional overview of floods fatality: the 1951–2020 period. Natural Hazards and Earth System Sciences Discussions, 2021, 1-22.

Hardoy, J., Pandiella, G., & Barrero, L. S. V. (2011). Local disaster risk reduction in Latin American urban areas. Environment and Urbanization, 23(2), 401-413.

Hederra, R. (1987). Environmental sanitation and water supply during floods in Ecuador(1982-1983). Disasters, 11(4), 297-309.

Jaillard, E., Hérail, G., Monfret, T., Díaz-Martínez, E., Baby, P., Lavenu, A., ... & Campos, D. (2000). Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northern Chile. Tectonic evolution of South America, edited by: Cordani, UG, Milani, E. J., Thomaz Filho, A., and Campos, DA, Rio de Janeiro, Brazil, 481-559.

Jankowfsky, S., Sharifian, M., Moges, E., Nicotina, L., Li, S., & Hilberts, A. (2024). How appropriate is the alternating block method to represent flooding from extreme precipitation events? (No. EGU24-6064). Copernicus Meetings.

Jonkman, S. N. (2005). Global perspectives on loss of human life caused by floods. Natural hazards, 34(2), 151-175.

Jonkman, S. N., & Kelman, I. (2005). An analysis of the causes and circumstances of flood disaster deaths. Disasters, 29(1), 75-97.

Koop, S. H., & van Leeuwen, C. J. (2017). The challenges of water, waste and climate change in cities. Environment, development and sustainability, 19(2), 385-418.

Lee, J., Perera, D., Glickman, T., & Taing, L. (2020). Water-related disasters and their health impacts: A global review. Progress in Disaster Science, 8, 100123.

Li, X., Erpicum, S., Mignot, E., Archambeau, P., Pirotton, M., & Dewals, B. (2021). Influence of urban forms on long-duration urban flooding: Laboratory experiments and computational analysis. Journal of Hydrology, 603, 127034.

Liu, Q., Yuan, J., Yan, W., Liang, W., Liu, M., & Liu, J. (2023). Association of natural flood disasters with infectious diseases in 168 countries and territories from 1990 to 2019: a worldwide observational study. Global Transitions, 5, 149-159.

Liu, T., Shi, P., & Fang, J. (2022). Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019). Natural Hazards, 111(3), 2601-2625.

Lonsdale, P. (1978). Ecuadorian subduction system. AAPG Bulletin, 62(12), 2454-2477.

Loor, I. (2024). Unveiling the dynamics of informal settlements in quito: occupation, organisation, and infrastructure challenges. GeoJournal, 89(2), 76.

Macías, L., Quiñonez-Macías, M., Toulkeridis, T., & Pastor, J. L. (2024). Characterization and geophysical evaluation of the recent 2023 Alausí landslide in the northern Andes of Ecuador. Landslides, 21(3), 529-540.

Macías, L., Bonifaz, H., Toulkeridis, T., & Pastor, J. L. (2025). Geotechnical and geophysical evaluation of the remarkable Chunchi landslide of 2021 in the Andean Ecuador. Natural Hazards, 1-23.

Marengo, J. A., Cardona, O. D., & Martinez, R. (2022). Climatic hazards and disaster risk reduction in South-Central America and the Caribbean. Frontiers in Climate, 4, 1111676.

Marrero, J. M., Yepes, H., Salazar, P., & Lara, S. (2023). Urbicide or Suicide? Shaping Environmental Risk in an Urban Growth Context: The Example of Quito City (Ecuador). In Urbicide: The Death of the City (pp. 263-291). Cham: Springer International Publishing.

Mato, F., & Toulkeridis, T. (2017). THE MISSING LINK IN EL NIÑO'S PHENOMENON GENERATION. Science of tsunami hazards, 36(3).

McDonald, R. I., Kareiva, P., & Forman, R. T. (2008). The implications of current and future urbanization for global protected areas and biodiversity conservation. Biological conservation, 141(6), 1695-1703.

Mejia, S. N., Paz, S. M., Tabari, H., Singaña-Chasi, M., Paredes, D., & Willems, P. (2023). Climate change impacts on IDF curves, urban flooding, and river discharge in Quito, Ecuador (No. EGU23-17185). Copernicus Meetings.

Mendoza, B., Fiallos, M., Iturralde, S., Santillán, P., Guananga, N., Bejar, J., ... & Sándor, Z. (2021). Determination of field capacity in the Chibunga and Guano rivers micro-basins. F1000Research, 10.

Mokuolu, O. A., Odunaike, A. K., Iji, J. O., & Aremu, A. S. (2022). Assessing the effects of solid wastes on urban flooding: A case study of Isale Koko. LAUTECH Journal of Civil and Environmental Studies, 9(1), 22-30.

Moncayo-Galárraga, D. S., Robayo-Nieto, A. A., Padilla, O., & Toulkeridis, T. (2022, November). Implementation of the CAESAR-Lisflood cellular automated landscape evolution model to determine possible flood areas in the Portoviejo river sub-basin, Coastal Ecuador. In International Conference on Applied Technologies (pp. 212-227). Cham: Springer Nature Switzerland.

Moore, M., Gould, P., & Keary, B. S. (2003). Global urbanization and impact on health. International journal of hygiene and environmental health, 206(4-5), 269-278.

Moore, R. J. (1999). Real-time flood forecasting systems: Perspectives and prospects. Floods and landslides: Integrated risk assessment, 147-189.

Nguyen, H. T., Duong, T. Q., Nguyen, L. D., Vo, T. Q., Tran, N. T., Dang, P. D., ... & Nguyen, L. K. (2020). Development of a spatial decision support system for real-time flood early warning in the Vu Gia-Thu Bon river basin, Quang Nam Province, Vietnam. sensors, 20(6), 1667.

Oliveira, E. C. L. D., Nogueira Neto, A. V., Santos, A. P. P. D., da Costa, C. P. W., Freitas, J. C. G. D., Souza-Filho, P. W. M., ... & Tedeschi, R. G. (2023). Precipitation forecasting: from geophysical aspects to machine learning applications. Frontiers in Climate, 5, 1250201.

Orejuela, I. P., & Toulkeridis, T. (2020, April). Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador. In 2020 Seventh international conference on eDemocracy & eGovernment (ICEDEG) (pp. 201-207). IEEE.

Pabón-Caicedo, J. D., Arias, P. A., Carril, A. F., Espinoza, J. C., Borrel, L. F., Goubanova, K., ... & Villalba, R. (2020). Observed and projected hydroclimate changes in the Andes. Frontiers in Earth Science, 8, 61.

Pawar, B., & Patil, K. A. (2022). Analysis of Morphometric Parameters of Watershed Using GIS. In Recent Trends in Construction Technology and Management: Select Proceedings of ACTM 2021 (pp. 603-612). Singapore: Springer Nature Singapore.

Peltre, P. (1989). Quebradas y riesgos naturales en Quito, período 1900-1988. Estudios de geografía, 2, 45-65.

Pillosu, F. M., Bucherie, A., Kruczkiewicz, A., Haiden, T., Baugh, C., Hultquist, C., ... & Cloke, H. L. (2024). Can global rainfall forecasts identify areas at flash flood risk? Proof of concept for Ecuador. ECMWF Technical Memo, (917).

Pinheiro, S. A. R., Reis, G. B., de Souza Fraga, M., da Silva, D. D., Abreu, M. C., & Parma, L. M. (2024). Flow regionalization using precipitation data from different bases as a predictive variable. Physics and Chemistry of the Earth, Parts A/B/C, 133, 103516.

Pinos, J., & Quesada-Román, A. (2021). Flood risk-related research trends in Latin America and the Caribbean. Water, 14(1), 10.

Pinos, J., & Timbe, L. (2020). Mountain riverine floods in Ecuador: Issues, challenges, and opportunities. Frontiers in Water, 2, 545880.

Poma, J., Gualotuña, D., & Álvarez, C. (2024, September). Mass Movement Risk Assessment with Drone and GPS Technology: A Case Study in Quito, Ecuador. In 2024 IEEE ANDESCON (pp. 1-6). IEEE.

Poma, P., Polanco, M., Usca, K., Casella, C., & Toulkeridis, T. (2025). An Evaluation of the Public Service of the Integrated Municipal Management of Urban Solid Waste in the Galapagos and the Amazonian Region of Ecuador. Sustainability, 17(3), 1066.

Poma, P., Usca, M., & Toulkeridis, T. (2022, November). Evaluation of the Environmental Impacts Generated by the Management of Urban Solid Waste in the Open Waste Dump in Loreto, Eastern Ecuador. In International Conference on Applied Technologies (pp. 466-481). Cham: Springer Nature Switzerland.

Poma, P., Usca, M., Fdz-Polanco, M., Garcia-Villacres, A., & Toulkeridis, T. (2021). Landslide and environmental risk from oil spill due to the rupture of SOTE and OCP pipelines, San Rafael Falls, Amazon Basin, Ecuador. Int. J. Adv. Sci. Eng. Inf. Technol, 11(4), 1558-1566.

Poveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., & Van Oevelen, P. J. (2020). High impact weather events in the Andes. Frontiers in Earth Science, 8, 162.

Puente-Sotomayor, F., Egas, A., & Teller, J. (2021). Land policies for landslide risk reduction in Andean cities. Habitat international, 107, 102298.

Raleigh, C. (2011). The search for safety: The effects of conflict, poverty and ecological influences on migration in the developing world. Global Environmental Change, 21, S82-S93.

Reyes Pozo, M. D., Moreno Izquierdo, V. J., López Alulema, A. C., Lasso Benítez, L. D. P., Suango Sanchez, V. D. R., & Toulkeridis, T. (2020, November). Use of the heuristic model and GIS to zone landslide hazards in the Mira River Basin, Ecuador. In Conference on Information and Communication Technologies of Ecuador (pp. 243-257). Cham: Springer International Publishing.

Rojas, T., Dunning, P., & Sisa, I. (2022). Lifeguard Training Program and Drowning Death Rates in Ecuador, 2000–2019. American journal of public health, 112(11), 1546-1550.

Rosales-Rueda, M. (2018). The impact of early life shocks on human capital formation: Evidence from El Niño floods in Ecuador. Journal of health economics, 62, 13-44.

Sahu, M. K., Shwetha, H. R., & Dwarakish, G. S. (2024). Unravelling flood complexity: statistical and neural network approaches for Cauvery River Basin, India. Natural Hazards, 120(15), 14495-14528.

Salami, A. W., Bilewu, S. O., Ibitoye, B. A., & Ayanshola, M. A. (2017). Runoff hydrographs using Snyder and SCS synthetic unit hydrograph methods: A case study of selected rivers in south west Nigeria. Journal of Ecological Engineering, 18(1).

Salcedo, D., Padilla Almeida, O., Morales, B., & Toulkeridis, T. (2022, January). Smart city planning based on landslide susceptibility mapping using fuzzy logic and multi-criteria evaluation techniques in the city of quito, ecuador. In Doctoral Symposium on Information and Communication Technologies-DSICT (pp. 89-103). Cham: Springer International Publishing.

Salcedo, D., Padilla Almeida, O., Morales, B., & Toulkeridis, T. (2018). Landslide susceptibility mapping using fuzzy logic and multi-criteria evaluation techniques in the city of Quito, Ecuador. Natural Hazards and Earth System Sciences Discussions, 2018, 1-33.

Sandoval Erazo, W., Toulkeridis, T., Aguilar Ponce, A., Chiriboga, S. E., & Salazar, E. (2021, June). Risk and vulnerability analysis of flood hazards in the Colón Parrish, western Ecuador based on HEC-RAS numerical simulation. In XV Multidisciplinary International Congress on Science and Technology (pp. 245-260). Cham: Springer International Publishing.

Sandoval-Erazo, W. and Toulkeridis, T., 2025: Concentration Time Analysis – Case study of the Mal Paso River Basin, Ecuador. Submitted

Santos, T., Martins, C. C., Schneider, G., Hochwart, B., & Triani, B. (2023). On the intersection of international security, defense, and climate change in Latin America and the Caribbean. Brazilian Journal of International Relations, 11(2), 282-308.

Sarker, B., Keya, K. N., Mahir, F. I., Nahiun, K. M., Shahida, S., & Khan, R. A. (2021). Surface and ground water pollution: causes and effects of urbanization and industrialization in South Asia. Scientific Review, 7(3), 32-41.

Sarmiento, F. O. (2009). Geomorphology of natural hazards and human-induced disasters in Ecuador. Developments in Earth Surface Processes, 13, 149-163.

Sassolas-Serrayet, T., Cattin, R., & Ferry, M. (2018). The shape of watersheds. Nature communications, 9(1), 3791.

Schreider, S. Y., Smith, D. I., & Jakeman, A. J. (2000). Climate change impacts on urban flooding. Climatic Change, 47, 91-115.

Sekovski, I., Newton, A., & Dennison, W. C. (2012). Megacities in the coastal zone: Using a driver-pressure-state-impact-response framework to address complex environmental problems. Estuarine, Coastal and Shelf Science, 96, 48-59.

Shah, K., & Suryanarayana, T. M. V. (2014). Characterization and Frequency Analysis of One Day Annual Maximum and Two to Seven Consecutive Days’ Maximum Rainfall of Panam Dam, Gujarat, India. International Journal of Engineering Trends and Technology (IJETT), 13(2), 76-80.

Sharif, H., & Miller, N. L. (2006, January). Hydroclimatological predictions based on basin’s humidity index. In Conf. on Climate Variability and Change, 18th, Atlanta, GA (Vol. 28).

Shih, S. F., & Hamrick, R. L. (1975). A modified Monte Carlo technique to compute Thiessen coefficients. Journal of Hydrology, 27(3-4), 339-356.

Silva, J. R. I., de Assunção Montenegro, A. A., de Andrade Farias, C. W. L., Jardim, A. M. D. R. F., da Silva, T. G. F., & Montenegro, S. M. G. L. (2022). Morphometric characterization and land use of the Pajeú river basin in the Brazilian semi-arid region. Journal of South American Earth Sciences, 118, 103939.

Singh, R. L., & Singh, P. K. (2017). Global environmental problems. Principles and applications of environmental biotechnology for a sustainable future, 13-41.

Sivakumar, B. (2011). Global climate change and its impacts on water resources planning and management: assessment and challenges. Stochastic Environmental Research and Risk Assessment, 25, 583-600.

Stevaux, J. C., Latrubesse, E. M., Hermann, M. L. D. P., & Aquino, S. (2009). Floods in urban areas of Brazil. Developments in Earth Surface Processes, 13, 245-266.

Tellman, B., McDonald, R. I., Goldstein, J. H., Vogl, A. L., Flörke, M., Shemie, D., ... & Veiga, F. (2018). Opportunities for natural infrastructure to improve urban water security in Latin America. PLoS One, 13(12), e0209470.

Toapanta, R., Chafla, J., & Toapanta, A. (2020, October). Physical variables monitoring to contribute to landslide mitigation with IoT-based systems. In The International Conference on Advances in Emerging Trends and Technologies (pp. 58-71). Cham: Springer International Publishing.

Toulkeridis, T., & Zach, I. (2017). Wind directions of volcanic ash-charged clouds in Ecuador–implications for the public and flight safety. Geomatics, Natural Hazards and Risk, 8(2), 242-256.

Toulkeridis, T., Rodríguez, F., Arias Jiménez, N., Baile, D. S., Martínez, R. S., Addison, A., ... & Díaz Perez, C. (2016). Causes and consequences of the sinkhole at El Trébol of Quito, Ecuador–implications for economic damage and risk assessment. Natural Hazards and Earth System Sciences, 16(9), 2031-2041.

Toulkeridis, T., Simón Baile, D., Rodríguez, F., Salazar Martínez, R., Arias Jiménez, N., & Carreon Freyre, D. (2015). Subsidence at the “Trébol” of Quito, Ecuador: an indicator for future disasters?. Proceedings of the International Association of Hydrological Sciences, 372(372), 151-155.

Toulkeridis, T., Tamayo, E., Simón-Baile, D., Merizalde-Mora, M. J., Reyes–Yunga, D. F., Viera-Torres, M., & Heredia, M. (2020). Cambio Climático según los académicos ecuatorianos-Percepciones versus hechos. LA GRANJA. Revista de Ciencias de la Vida, 31(1), 21-46.

Trizio, F., Garzón-Roca, J., Eguibar, M. Á., Bracchi, P., & Torrijo, F. J. (2022). Above the Ravines: Flood Vulnerability Assessment of Earthen Architectural Heritage in Quito (Ecuador). Applied Sciences, 12(23), 11932.

Troncoso, L., Torrijo, F. J., Ibadango, E., Pilatasig, L., Alonso-Pandavenes, O., Mateus, A., ... & Viteri, F. (2024). Analysis of the Impact Area of the 2022 El Tejado Ravine Mudflow (Quito, Ecuador) from the Sedimentological and the Published Multimedia Documents Approach. GeoHazards, 5(3), 596-620.

Valdivieso-García, K., Vázquez-Patiño, A., Saritama, H., Contreras, J., Avilés, A., & García, F. (2024). Influence of climate change on precipitation extremes in Ecuador. Climatic Change, 177(11), 165.

Vallejo, R. Z., Almeida, O. P., D’Howitt, M. C., Toulkeridis, T., Rodriguez, F., Mato, F., & Muñoz, B. M. (2018, April). Numerical probability modeling of past, present and future landslide occurrences in Nothern Quito, Ecuador. In 2018 International Conference on eDemocracy & eGovernment (ICEDEG) (pp. 117-125). IEEE.

Veenema, T. G., Thornton, C. P., Lavin, R. P., Bender, A. K., Seal, S., & Corley, A. (2017). Climate change–related water disasters’ impact on population health. Journal of Nursing Scholarship, 49(6), 625-634.

Velez, R., Calderon, D., Carey, L., Aime, C., Hultquist, C., Yetman, G., ... & Chen, R. S. (2022). Advancing Data for Street-Level Flood Vulnerability: Evaluation of Variables Extracted from Google Street View in Quito, Ecuador. IEEE Open Journal of the Computer Society, 3, 51-61.

Verma, S., & Verma, R. K. (2023). SCS-CN methodology further modified. Water Supply, 23(6), 2604-2622.

Viana, E. B., Galbetti, T. A. S., Galbetti, M. V., de Oliveira Ribeiro, V., & Diodato, J. O. (2022). Software para determinação de Chuvas de Projeto. Terr@ Plural, 16, 1-12.

Vidal, X., Burgos, L., & Zevallos, O. (2018). 11 Protección y recuperación ambiental de las laderas del Pichincha en Quito, Ecuador. Agua y Ciudades en América Latina, 173.

Watson, C. S., Elliott, J. R., Ebmeier, S. K., Vásquez, M. A., Zapata, C., Bonilla-Bedoya, S., ... & Sevilla, E. (2022). Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador. Natural Hazards and Earth System Sciences, 22(5), 1699-1721.

Werner, M., Reggiani, P., Roo, A. D., Bates, P., & Sprokkereef, E. (2005). Flood forecasting and warning at the river basin and at the European scale. Natural hazards, 36, 25-42.

Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O., & Brashares, J. S. (2008). Accelerated human population growth at protected area edges. Science, 321(5885), 123-126.

Zou, X. Y., Peng, X. Y., Zhao, X. X., & Chang, C. P. (2023). The impact of extreme weather events on water quality: International evidence. Natural Hazards, 115(1), 1-21.

Descargas

Publicado

2025-09-29

Cómo citar

Gutiérrez-Caiza, C. A. ., Espinoza-Romero, V. ., & Toulkeridis, T. (2025). Pronóstico de inundaciones en cuencas de respuesta rápida: un estudio de caso de la microcuenca Yacupugro de las laderas del volcán Pichincha en Quito, Ecuador. Revista Geográfica De Chile Terra Australis, 61(1). https://doi.org/10.23854/07199562.2025611.gutierrez