Generación de productos combinados de precipitación en la cuenca Choqueyapu, Bolivia

GENERATION OF COMBINED PRECIPITATION PRODUCTS IN THE CHOQUEYAPU BASIN, BOLIVIA

Authors

  • Fedra Alcala Estudiante en Ingeniería Civil – Investigadora Asistente (CIICA) - Centro de Investigaciones en Ingeniería Civil y Ambiental, Universidad Privada Boliviana
  • Jhonatan Ureña 2Licenciado en Ingeniería Civil – Investigador Asociado (CIICA) - Centro de Investigaciones en Ingeniería Civil y Ambiental, Universidad Privada Boliviana
  • Oliver Saavedra Doctor en Ingeniería Civil – director (CIICA) - Centro de Investigaciones en Ingeniería Civil y Ambiental, Universidad Privada Boliviana

DOI:

https://doi.org/10.23854/07199562.2025612.alcala

Keywords:

Hourly Precipitation, GSMaP, rain gauges, Choqueyapu basin

Abstract

This study focuses in hourly precipitation dataset generation during January 2021 and May 2023, integrating local meteorological data and remote sensing. At the initial analysis stage, the satellite-based product GSMaP.v6_NRT_Gauge showed overestimation when comparing with local rain gauges. After applying the proposed methodology, the correlation coefficients improved 39% within the time series, moving from 0.46 with satellite data to 0.65 corresponding to the fifth iteration (GS product). In this sense, it was showed a better coherence among rain gauge observations y combined product GS. Moreover, it was obtained a remarkable change regarding Nash and Sutcliffe Efficiency (NSE), moving from -2 to 0.43. The determination coefficient (R²) improved from 0.21 to 0.42, considering that combined product shows spatial variability. Moreover, the Mean Absolute Error (MAE) was reduced from 0.08 to 0.03 and the RMSE from 0.37 to 0.16, decreasing average errors and deviations significantly. The applied methodology showed better results when analyzing periods with precipitation than periods without precipitation. These improvements at the indicators allow enough spatial and temporal resolution, to carry out flood analysis using hydrologic and hydrodynamic models.

Downloads

Download data is not yet available.

References

Achá, N. A., Saavedra, O. C., & Ureña, J. E. (2022). Modelación hidrológica en la cuenca del río Rocha incorporando lineamientos de caudal ecológico. Revista Investigación & Desarrollo, 22(1). https://doi.org/10.23881/idupbo.022.1-5i

Arreguín, F., & López, M. (2016). Las inundaciones en un marco de incertidumbre climática. Tecnología y Ciencias del Agua, VII(5). https://www.scielo.org.mx/pdf/tca/v7n5/2007-2422-tca-7-05-00005.pdf

Ayala Ticona, G., Soto Trujillo, A., Esquivel N., N., Liera, C., Coleoni, C., Forero, T., Maunter, M., Mancada, A., & Santos, T. (2022). Planificación hídrica de la Cuenca Alta del Río La Paz. https://www.sei.org/wp-content/uploads/2023/05/pdc-la-paz-bw.pdf

Aybar, C., Lavado, W., Huerta, A., Fernández, C., Vega, F., Sabino, E., & Felipe, O. (2017). Uso del producto grillado pisco de precipitación en estudios, investigaciones y sistemas operacionales de monitoreo y pronóstico hidrometeorológico. https://repositorio.senamhi.gob.pe/handle/20.500.12542/260

Blacutt, L. A., Herdies, D. L., de Goncalves, L. G. G., Vila, D. A., & Andrade, M. (2015). Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia. Atmospheric Research, 163. https://doi.org/10.1016/j.atmosres.2015.02.002

Caos en La Paz: tormenta y desborde en calles siembran temor y arrastran autos. (2024, 20 de marzo). Opinión. https://www.opinion.com.bo/articulo/pais/temor-paz-lluvias-granizo-desborde-calles-siembran-temor-arrastran-autos/20240320175632940346.html

Luis, J., & Fernández, U. (2013). EL CAMBIO CLIMÁTICO: SUS CAUSAS Y EFECTOS MEDIOAMBIENTALES CLIMATE CHANGE: CAUSES AND ENVIRONMENTAL EFFECTS. Anales de la Real Academia de Medicina y Cirugia de Valladolid, 50. https://uvadoc.uva.es/bitstream/handle/10324/23839/ARAMCV-2013-50-cambio-climatico.pdf?sequence=1&isAllowed=y

Mantas, V. M., Liu, Z., Caro, C., & Pereira, A. J. S. C. (2015). Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmospheric Research, 163. https://doi.org/10.1016/j.atmosres.2014.11.012

Medinaceli, X. (2000). La Paz, ciudad de cerros o de ríos? Revista Ciencia y Cultura. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2077-33232000000100008&nrm=iso

Saavedra, O., & Ureña, J. (2022). Generation of Combined Daily Satellite-Based Precipitation Products over Bolivia. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174195

Saavedra, O., Ureña, J., & Perales, M. (2023). Implementation of HydroBID Model with Satellite-Based Precipitation Products in Guadalquivir Basin, Bolivia. Water, 15(18). https://doi.org/10.3390/w15183250

Ureña, J., Saavedra, O., & Kubota, T. (2021). The Development of a Combined Satellite-Based Precipitation Dataset across Bolivia from 2000 to 2015. Remote Sensing, 13(15). https://doi.org/10.3390/rs13152931

Ureña, J. E., Alcalá, F. V., & Saavedra, O. C. (2024). Generación de un producto de precipitación diaria para la cuenca Choqueyapu en la ciudad de la Paz. Revista Investigación & Desarrollo, 24(1). https://doi.org/10.23881/idupbo.024.1-4i

Wickel, A., Ghajarnia, N., Yates, D., Newman, A., Escobar, M., Prkey David, Lima, N., Escalera Ana Cecilia, & von Kaenel, M. (2019). Developing a gridded high-resolution gauge based precipiation product for Bolivia. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-18457-1.pdf

Published

2025-08-25

How to Cite

Alcala, F. ., Ureña, J. ., & Saavedra, O. . (2025). Generación de productos combinados de precipitación en la cuenca Choqueyapu, Bolivia: GENERATION OF COMBINED PRECIPITATION PRODUCTS IN THE CHOQUEYAPU BASIN, BOLIVIA. Revista Geográfica De Chile Terra Australis, 61(2). https://doi.org/10.23854/07199562.2025612.alcala