Validation of digital elevation models in the Central Andes of Chile


  • Diego Alfonso Soza Private
  • Daniel Falaschi Departamento de Geografía, Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, Mendoza, 5500, Argentina



DEM, vertical accuracy, IceSat-2 mission,GNSS,central Andes


This study validated the vertical exactitude and accuracy of seven digital elevation models DEM (SRTM X-SAR, SRTMv3 void voided 1 arcsec, SRTMv3 void filled 3 arcsec, SRTM GL1 Ellip, Aster GlobalDEM v3 2019/08. Alos World 3D 30m v21 2018/04,TamDEMx), considering both regional and local scale in middle/ higher mountain areas of the central Andes of Chile. Exactitude and Accuracy were determined using metrics and/or statistical tests reviewed by the National Institute of Standardization (INN), tests that considered the elevation data of 149 ground control acquired trough several GNSS surveys, and 1825 gcp provided by IceSat-2 mission records. At the regional scale, the results of the error estimation between the observed and the predicted value indicate that the DEM SRTM X-SAR is the most precise and vertically accurate set (21,3 m of exactness equivalent to 85% of exactitude; RMSEz = 21,7 m of precision equivalent to 86.8% of accurate). However, the band layout does not allow calculations that ensure the completeness of an area greater than 2500 sqkm. Then, the next option is the DEM Alos World 3D 30m v21 2018/04 (22,5 m of exactness representing 90% of exactitude; RMSEz = 23 m equivalent to 92% of accurate). Locally, and first considering the entire area and all IceSat-2 data, and then only those measurements in stable zones, in both cases the Alos World 3d is the most exactly and vertically accurately DEM, followed by the DEM AsterGDEMv3 19/08. The poorest indicators belong to the DEM TamDEMx


Download data is not yet available.


ALGANCI, U., BESOL, B. y SERTEL, E., 2018. Accuracy Assessment of Different Digital Surface Models. ISPRS International Journal of Geo-Information [en línea], vol. 7, no. 3, pp. 114. ISSN 2220-9964. DOI 10.3390/ijgi7030114. Disponible en:

ASPRS, 2015. Positional Accuracy Standards for Digital Geospatial Data ed.1 v.1.0.0. Photogrammetric Engineering & Remote Sensing, vol. 81, no. 3, pp. 1–26. ISSN 00991112. DOI 10.14358/PERS.81.3.A1-A26.

BERTHIER, E., ARNAUD, Y., KUMAR, R., AHMAD, S., WAGNON, P. y CHEVALLIER, P., 2007. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, vol. 108, no. 3, pp. 327–338. ISSN 00344257. DOI 10.1016/j.rse.2006.11.017.

BERTHIER, E., ARNAUD, Y., VINCENT, C. y RÉMY, F., 2006. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophysical Research Letters [en línea], vol. 33, no. 8, pp. 1–8. ISSN 00948276. DOI 10.1029/2006GL025862. Disponible en:

BIGDATA EARTH, 2017. A Survey and Clarification of DEM Vertical Accuracy. [en línea]. [Consulta: 10 agosto 2020]. Disponible en:

BLOKKER, G., 2019. Using ICESAT-2 to monitor Alpine Glaciers. [en línea]. Delft, The Netherlands: Disponible en:

BREYTENBACH, A., 2016. Comparative accuracy evaluation of fine-scale global and local digital surface models: the Tshwane case study I. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 4, no. 2W1, pp. 211–222. ISSN 21949050. DOI 10.5194/isprs-annals-IV-2-W1-211-2016.

BURCHFIELD, D.R., PETERSEN, S.L., KITCHEN, S.G. y JENSEN, R.R., 2020. sUAS-Based Remote Sensing in Mountainous Areas: Benefits, Challenges, and Best Practices. Papers in Applied Geography [en línea], vol. 6, no. 1, pp. 72–83. ISSN 2375494X. DOI 10.1080/23754931.2020.1716385. Disponible en:

CHARRIER, R., ITURRIZAGA, L., CARRETIER, S. y REGARD, V., 2019. Evolución geomorfológica y glaciar de las hoyas de los ríos Maipo superior y Cachapoal en la Cordillera Principal Andina, Chile central (34°-35° S). Andean geology, vol. 46, no. 2, pp. 240–278. ISSN 0718-7106. DOI 10.5027/andgeov46n2-3108.

CRONEBORG, L., SAITO, K., MATERA, M., MCKEOWN, D. y AARDT, J. van, 2015. Digital Elevation Models.A Guidance Note on how Digital Elevation Models are created and used – includes key definitions, sample Terms of Reference and how best to plan a DEM-mission [en línea]. Washington, DC, USA: International Bank for Reconstruction and Development. Disponible en:

DE FRANÇA, L.L.S., PENHA, A. de L.T. da y DE CARVALHO, J.A.B., 2019. Comparison between absolute and relative positional accuracy assessment-a case study applied to digital elevation models. Boletim de Ciencias Geodesicas, vol. 25, no. 1, pp. 1–22. ISSN 19822170. DOI 10.1590/s1982-21702019000100003.

DIRECCIÓN DE VIALIDAD, 2018. Manual De Carreteras. Vol. N°2. Procedimientos de Estudios Viales. . Santiago,Chile:

DIRECCIÓN GENERAL DE AGUAS, 2011. Inventario público de glaciares. [en línea]. Disponible en:

EARTH OBSERVATION CENTER, 2018. SRTM X-SAR Digital Elevation Models. . Berlin,Germany:

EARTH OBSERVATION RESEARCH CENTER, 2019. ALOS Global Digital Surface Model (DSM) ALOS World 3D - 30m (AW3D30) Version 2.2. Product Description. [en línea]. Saitama, Japan: Disponible en:

ENSSLE, F., FRITZ, A. y KOCH, B., 2015. Comparing Icesat/Glas based elevation heights with photogrammetric terrain heights from UAV-imagery on the east Tibetan plateau. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 40, no. 3W3, pp. 385–390. ISSN 16821750. DOI 10.5194/isprsarchives-XL-3-W3-385-2015.

FARR, T.G., ROSEN, P.A., CARO, E., CRIPPEN, R., DUREN, R., HENSLEY, S., KOBRICK, M., PALLER, M., RODRÍGUEZ, E., ROTH, L., SEAL, D., SHAFFER, S., SHIMADA, J., UMLAND, J., WERNER, M., OSKIN, M., BURBANK, D. y ALSDORF, D., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, vol. 45, no. RG 2004, pp. 1–33. DOI 10.1029/2005RG000183.

FGDC (FEDERAL GEOGRAPHIC DATA COMMITTEE), 1998. Draft Geospatial Positioning Accuracy Standards. Part 3: National Standard for Spatial Data Accuracy. FGDC-STD-007.3-1998. Canadian Anaesthetists’ Society Journal [en línea]. Reston, Virginia, USA: Disponible en:

GRUBBS, F.E., 1950. Sample Criteria for Testing Outlying Observations. The Annals of Mathematical Statistics [en línea], vol. 21, no. 1, pp. 27–58. ISSN 0003-4851. DOI 10.1214/aoms/1177729885. Disponible en:

HAWKER, L., BATES, P., NEAL, J. y ROUGIER, J., 2018. Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM. Frontiers in Earth Science [en línea], vol. 6, no. December, pp. 1–9. ISSN 2296-6463. DOI 10.3389/feart.2018.00233. Disponible en:

HÖHLE, J. y HÖHLE, M., 2009. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing [en línea], vol. 64, no. 4, pp. 398–406. ISSN 09242716. DOI 10.1016/j.isprsjprs.2009.02.003. Disponible en:

HUBBARD, B. y GLASSER, N.F., 2005. Field Techniques in Glaciology and Glacial Geomorphology. 1st. Hoboken, New Jersey ,USA: John Wiley & Sons, Ltd. ISBN 9780470844267.

INSTITUTO GEOGRAFICO MILITAR DE CHILE, 2018. Sistema de referencia geodésico para Chile SIRGAS-Chile, época 2016.0. [en línea]. Santiago,Chile: Disponible en:

INSTITUTO NACIONAL DE NORMALIZACIÓN, 2014. NCh-ISO 19157/2014 Información geográfica - Calidad de datos [en línea]. 2014. Chile: s.n. Disponible en:

INSTITUTO NACIONAL DE NORMALIZACIÓN, 2016. Aplicación de Normas Chilenas de información geográfica. Documento técnico. [en línea]. Santiago, Chile: Disponible en:

JAPAN SPACE SYSTEMS, 2019. Aster GDEM. Release of ASTER GDEM Version 3 [en línea]. [Consulta: 10 agosto 2020]. Disponible en:

JEDLICKA, K., 2009. Accuracy of Surface Models Acquired from Different Sources -Important Information for Geomorphological Research. Geomorphologia Slovaca Et Bohemica, vol. 1, pp. 17–28.

KARGEL, J.S., LEONARD, G.J., BISHOP, M.P., KÄÄB, A. y RAUP, B.H., 2014. Global Land Ice Measurements from Space [en línea]. 1st. Chichester, West Sussex, United Kingdom: Praxis Publishing. ISBN 978-3-540-79818-7. Disponible en:

KIM, S., 2015. The Estimation of the Variogram in Geostatistical Data with Outliers [en línea]. S.l.: Okayama University. Disponible en:

LAKSHMI, S.E. y YARRAKULA, K., 2018. Review and critical analysis on digital elevation models. Geofizika [en línea], vol. 35, no. 2, pp. 129–157. ISSN 03523659. DOI 10.15233/gfz.2018.35.7. Disponible en:

LEIDMAN, S.Z., RENNERMALM, Å.K., BROCCOLI, A.J., VAN AS, D., VAN DEN BROEKE, M.R., STEFFEN, K. y HUBBARD, A., 2020. Methods for Predicting the Likelihood of Safe Fieldwork Conditions in Harsh Environments. Frontiers in Earth Science [en línea], vol. 8, no. July, pp. 260. DOI 10.3389/feart.2020.00260. Disponible en:

LINDER, W., 2016. Digital Photogrammetry: A Practical Course. Fourth. Düsseldorf: Springer. ISBN 9783662504628.

LIU, K., SONG, C., KE, L., JIANG, L., PAN, Y. y MA, R., 2019. Global open-access DEM performances in Earth’s most rugged region High Mountain Asia: A multi-level assessment. Geomorphology [en línea], vol. 338, no. April, pp. 16–26. ISSN 0169555X. DOI 10.1016/j.geomorph.2019.04.012. Disponible en:

LPDAAC LAND PROCESSES DISTRIBUTED ACTIVE ARCHIVE CENTER, 2015. The Shuttle Radar Topography Mission (SRTM) Collection User Guide. [en línea]. Sioux Falls,SD,USA: Disponible en:

MARKUS, T., NEUMANN, T.A., MARTINO, A., ABDALATI, W., BRUNT, K., CSATHÓ, B., FARRELL, S., FRICKER, H., GARDNER, A., HARDING, D., JASINSKI, M., KWOK, R., MAGRUDER, L., LUBIN, D., LUTHCKE, S., MORISON, J., NELSON, R., NEUENSCHWANDER, A., PALM, S., POPESCU, S., SHUM, C.K., SCHUTZ, B.E., SMITH, B., YANG, Y. y ZWALLY, J., 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment [en línea], vol. 190, no. March, pp. 260–273. ISSN 00344257. DOI 10.1016/j.rse.2016.12.029. Disponible en:

MUKHERJEE, Samadrita, MUKHERJEE, Sandip, BHARDWAJ, A., MUKHOPADHYAY, A., GARG, R.D. y HAZRA, S., 2015. Accuracy of cartosat-1 DEM and its derived attribute at multiple scale representation. Journal of Earth System Science, vol. 124, no. 3, pp. 487–495. ISSN 0973774X. DOI 10.1007/s12040-015-0557-x.

NASA-METI SC. TEAMS, 2019. NASA and METI Release ASTER Global DEM Version 3. LPDAAC-USGS [en línea]. [Consulta: 10 agosto 2020]. Disponible en:

NEUMANN, T.A., MARTINO, A.J., MARKUS, T., BAE, S., BOCK, M.R., BRENNER, A.C., BRUNT, K.M., CAVANAUGH, J., FERNANDES, S.T., HANCOCK, D.W., HARBECK, K., LEE, J., KURTZ, N.T., LUERS, P.J., LUTHCKE, S.B., MAGRUDER, L., PENNINGTON, T.A., RAMOS-IZQUIERDO, L., REBOLD, T., SKOOG, J. y THOMAS, T.C., 2019. The Ice, Cloud, and Land Elevation Satellite – 2 mission: A global geolocated photon product derived from the Aadvanced Ttopographic Llaser Aaltimeter Ssystem. Remote Sensing of Environment [en línea], vol. 233, no. July, pp. 111325. ISSN 00344257. DOI 10.1016/j.rse.2019.111325. Disponible en:

NUTH, C. y KÄÄB, A., 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, vol. 5, no. 1, pp. 271–290. ISSN 19940416. DOI 10.5194/tc-5-271-2011.

PATEL, A., KATIYAR, S.K. y PRASAD, V., 2016. Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS). Egyptian Journal of Remote Sensing and Space Science [en línea], vol. 19, no. 1, pp. 7–16. ISSN 20902476. DOI 10.1016/j.ejrs.2015.12.004. Disponible en:

PELLIKA, P.K.E. y REES, W.G., 2011. Remote sensing of glaciers?: techniques for topographic, spatial, and thematic mapping of glaciers. 1st. Boca Raton, FL, USA: CRC Press Taylor & Francis Group. ISBN 978-0-203-85130-2.

PITTE, P., BERTHIER, E., MASIOKAS, M.H., CABOT, V., RUIZ, L., FERRI HIDALGO, L., GARGANTINI, H. y ZALAZAR, L., 2016. Geometric evolution of the Horcones Inferior Glacier (Mount Aconcagua, Central Andes) during the 2002-2006 surge. Journal of Geophysical Research F: Earth Surface, vol. 121, no. 1, pp. 111–127. ISSN 21699011. DOI 10.1002/2015JF003522.

PURINTON, B. y BOOKHAGEN, B., 2018. Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (?1/4 2015) in the south-central Andes. Earth Surface Dynamics, vol. 6, no. 4, pp. 971–987. ISSN 2196632X. DOI 10.5194/esurf-6-971-2018.

REINARTZ, P., MÜLLER, R., LEHNER, M. y SCHROEDER, M., 2006. Accuracy analysis for DSM and orthoimages derived from SPOT HRS stereo data using direct georeferencing. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 60, no. 3, pp. 160–169. ISSN 09242716. DOI 10.1016/j.isprsjprs.2005.12.003.

SISTEMA NACIONAL DE INFORMACIÓN TERRITORIAL, 2018. Geodesia en Chile , teoría y aplicación del Sistema de Referencia Geocéntrico para las Américas (SIRGAS) [en línea]. 1. Santiago, Chile: Sistema Nacional de Coordinación de Información Territorial. Disponible en:

SMITH, B., FRICKER, H.A., GARDNER, A.S., SIEGFRIED, M.R., ADUSUMILLI, S., CSATHÓ, B., HOLSCHUH, N., NILSSON, J. y PAOLO, F., 2019. ATLAS/ICESat-2 L3A Land Ice Height User Guide, Version 2. [en línea]. Boulder, Colorado USA: Disponible en:

SMITH, B., FRICKER, H.A., GARDNER, A.S., SIEGFRIED, M.R., ADUSUMILLI, S., CSATHÓ, B., HOLSCHUH, N., NILSSON, J., PAOLO, F. y TEAM, Ices.-2 S., 2020. ATLAS/ICESat-2 L3A Land Ice Height User Guide, Version 3. [en línea]. Boulder, Colorado USA: Disponible en:

SMITH, B., FRICKER, H.A., HOLSCHUH, N., GARDNER, A.S., ADUSUMILLI, S., BRUNT, K.M., CSATHÓ, B., HARBECK, K., HUTH, A., NEUMANN, T.A., NILSSON, J. y SIEGFRIED, M.R., 2019. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sensing of Environment [en línea], vol. 233, no. July, pp. 111352. ISSN 00344257. DOI 10.1016/j.rse.2019.111352. Disponible en:

SMITH, B., HANCOCK, D., HARBECK, K., ROBERTS, L., NEUMANN, T.A., BRUNT, Kelly, FRICKER, H.A., GARDNER, A.S., SIEGFRIED, M.R., ADUSUMILLI, S., CSATHÓ, B., HOLSCHUH, N., NILSSON, J. y PAOLO, F., 2019. Algorithm Theoretical Basis Document (ATBD) for Land Ice Along-Track Height Product (ATL06). ICE, CLOUD, and Land Elevation Satellite-2 (ICESat-2) Project. [en línea]. Greenbelt, Maryland: Disponible en:

SMITH, B., HANCOCK, D., HARBECK, K., ROBERTS, L., NEUMANN, T.A., BRUNT, Kelly M., FRICKER, H.A., GARDNER, A.S., SIEGFRIED, M.R., ADUSUMILLI, S., CSATHÓ, B., HOLSCHUH, N., NILSSON, J. y PAOLO, F., 2019. Algorithm Theoretical Basis (ATBD) for Land Ice Along-Track Height (ATL06) Release 002. ICE, CLOUD, and Land Elevation Satellite-2 (ICESat-2) Project. [en línea]. Greenbelt, Maryland USA: Disponible en:

SORIA MOLINA, B.M., 2014. Metodología para ejecución y control de calidad para ortofotos, mediante combinación de sensor digital con LiDAR en zonas rurales. S.l.: Universidad Politécnica de Madrid.

SULZER, W. y KOSTKA, R., 2007. Mt. Aconcagua: a challenge for remote sensing mapping activities in the Andes. 5th ICA Mountain Cartography Workshop [en línea]. Bohinj, Slovenia: s.n., pp. 229–235. Disponible en:

TACHIKAWA, T., KAKU, M. y IWASAKI, A., 2015. ASTER GDEM Version 3 Validation Report. [en línea]. Tokyo,Japan: Disponible en:

TADONO, T., NAGAI, H., ISHIDA, H., ODA, F., NAITO, S., MINAKAWA, K. y IWAMOTO, H., 2016. Generation of the 30 m-mesh global digital surface model by Alos Prism. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [en línea], vol. XLI-B4, no. July, pp. 157–162. ISSN 2194-9034. DOI 10.5194/isprsarchives-XLI-B4-157-2016. Disponible en:

TARRIÓ MOSQUERA, J.A., ARAVENA RAMIREZ, S. y SILVA VALDICIA, C., 2017. Asesoría en Geodesia y Cartografía aplicada a SIG. . Santiago, Chile:

TEDESCO, M., 2015. Remote Sensing of the Cryosphere. The Cryosp. Chichester, West Sussex, United Kingdom: Willey Blackwell. ISBN 9781118368855.

TUKEY, J.W., 1993. Exploratory Data Analysis: Past, Present and Future [en línea]. S.l.: s.n. Disponible en:

WESSEL, B., 2016. TanDEM-X Ground Segment DEM Products Specification Document. Public Document TD-GS-PS-0021 [en línea]. Oberpfaffenhofen, Germany: Disponible en:



How to Cite

Soza, D. A., & Falaschi, D. (2020). Validation of digital elevation models in the Central Andes of Chile. Revista Geográfica De Chile Terra Australis, 56(1), 22–40.